Melanoma whole exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance

نویسندگان

  • Hubing Shi
  • Gatien Moriceau
  • Xiangju Kong
  • Mi-Kyung Lee
  • Hane Lee
  • Richard C. Koya
  • Charles Ng
  • Thinle Chodon
  • Richard A. Scolyer
  • Kimberly B. Dahlman
  • Jeffrey A. Sosman
  • Richard F. Kefford
  • Georgina V. Long
  • Stanley F. Nelson
  • Antoni Ribas
  • Roger S. Lo
چکیده

The development of acquired drug resistance hampers the long-term success of B-RAF inhibitor therapy for melanoma patients. Here we show (V600E)B-RAF copy-number gain as a mechanism of acquired B-RAF inhibitor resistance in 4 out of 20 (20%) patients treated with B-RAF inhibitor. In cell lines, (V600E)B-RAF overexpression and knockdown conferred B-RAF inhibitor resistance and sensitivity, respectively. In (V600E)B-RAF amplification-driven (versus mutant N-RAS-driven) B-RAF inhibitor resistance, extracellular signal-regulated kinase reactivation is saturable, with higher doses of vemurafenib down-regulating phosho-extracellular signal-regulated kinase and re-sensitizing melanoma cells to B-RAF inhibitor. These two mechanisms of extracellular signal-regulated kinase reactivation are sensitive to the MEK1/2 inhibitor AZD6244/selumetinib or its combination with the B-RAF inhibitor vemurafenib. In contrast to mutant N-RAS-mediated (V600E)B-RAF bypass, which is sensitive to C-RAF knockdown, (V600E)B-RAF amplification-mediated resistance functions largely independently of C-RAF. Thus, alternative clinical strategies may potentially overcome distinct modes of extracellular signal-regulated kinase reactivation underlying acquired B-RAF inhibitor resistance in melanoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical Acquired Resistance to RAF Inhibitor Combinations in BRAF-Mutant Colorectal Cancer through MAPK Pathway Alterations.

UNLABELLED BRAF mutations occur in approximately 10% of colorectal cancers. Although RAF inhibitor monotherapy is highly effective in BRAF-mutant melanoma, response rates in BRAF-mutant colorectal cancer are poor. Recent clinical trials of combined RAF/EGFR or RAF/MEK inhibition have produced improved efficacy, but patients ultimately develop resistance. To identify molecular alterations drivin...

متن کامل

The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma.

Most patients with BRAF(V600)-mutant metastatic melanoma develop resistance to selective RAF kinase inhibitors. The spectrum of clinical genetic resistance mechanisms to RAF inhibitors and options for salvage therapy are incompletely understood. We performed whole-exome sequencing on formalin-fixed, paraffin-embedded tumors from 45 patients with BRAF(V600)-mutant metastatic melanoma who receive...

متن کامل

MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition.

Treatment of BRAF-mutant melanoma with combined dabrafenib and trametinib, which target RAF and the downstream MAP-ERK kinase (MEK)1 and MEK2 kinases, respectively, improves progression-free survival and response rates compared with dabrafenib monotherapy. Mechanisms of clinical resistance to combined RAF/MEK inhibition are unknown. We performed whole-exome sequencing (WES) and whole-transcript...

متن کامل

Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3.

The mechanisms underlying adaptive resistance of melanoma to targeted therapies remain unclear. By combining ChIP sequencing with microarray-based gene profiling, we determined that ERBB3 is upregulated by FOXD3, a transcription factor that promotes resistance to RAF inhibitors in melanoma. Enhanced ERBB3 signaling promoted resistance to RAF pathway inhibitors in cultured melanoma cell lines an...

متن کامل

Combinatorial treatments that overcome PDGFRβ-driven resistance of melanoma cells to V600EB-RAF inhibition.

(V600E)B-RAF mutation is found in 50% to 60% of melanomas, and the novel agents PLX4032/vemurafenib and GSK2118436 that inhibit the (V600E)B-RAF kinase achieve a remarkable clinical response rate. However, as might be expected, acquired clinical resistance to these agents arises in most melanoma patients. PLX4032/vemurafenib resistance that arises in vivo in tumor matched short-term cultures or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012